Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. strain WH 7803.

نویسندگان

  • D Lindell
  • E Padan
  • A F Post
چکیده

NtcA is a transcriptional activator involved in global nitrogen control in cyanobacteria. In the absence of ammonium it regulates the transcription of a series of genes encoding proteins required for the uptake and assimilation of alternative nitrogen sources (I. Luque, E. Flores, and A. Herrero, EMBO J. 13:2862-2869, 1994). ntcA, present in a single copy in the marine Synechococcus sp. strain WH 7803, was cloned and sequenced. The putative amino acid sequence shows a high degree of identity to NtcA from freshwater cyanobacteria in two functional domains. The expression of ntcA was negatively regulated by ammonium from a putative transcription start point located downstream of an NtcA consensus recognition sequence. Addition of either rifampin or ammonium led to a rapid decline in ntcA transcript levels with half-lives of less than 2 min in both cases. Nitrate-grown cells showed high ntcA transcript levels, as well as the capacity for active nitrite uptake. However, ammonium-grown cells showed low levels of the ntcA transcript and did not utilize nitrite. The addition of ammonium to nitrite uptake-active cells resulted in a gradual decline in the rate of uptake over a 24-h period. Active nitrite uptake was not induced in cells transferred to medium lacking a nitrogen source despite evidence of elevated expression of ntcA, indicating that ntcA expression is not sufficient for uptake capacity to develop. Nitrate and nitrite addition led to the development of nitrite uptake, whereas the addition of leucine did not. Furthermore, nitrite addition triggered the de novo protein synthesis required for uptake capacity to develop. These data suggest that nitrite and nitrate act as specific inducers for the synthesis of proteins required for nitrite uptake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of control of nitrite assimilation by ammonium in an oceanic picocyanobacterium, Synechococcus sp. strain WH 8103.

In cyanobacteria, the transcriptional activator NtcA is involved in global nitrogen control and, in the absence of ammonium, regulates the expression of genes involved in the assimilation of alternative nitrogen sources. The oceanic picocyanobacterium Synechococcus sp. strain WH 8103 harbors a copy of ntcA, but in the present study, we show that unlike other marine cyanobacteria that have been ...

متن کامل

Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp. strain WH 8103: effect of nitrogen source and availability on gene expression.

The genes encoding the structural components of the nitrate/nitrite assimilation system of the oceanic cyanobacterium Synechococcus sp. strain WH 8103 were cloned and characterized. The genes encoding nitrate reductase (narB) and nitrite reductase (nirA) are clustered on the chromosome but are organized in separate transcriptional units. Upstream of narB is a homologue of nrtP that encodes a ni...

متن کامل

Role of NtcB in activation of nitrate assimilation genes in the cyanobacterium Synechocystis sp. strain PCC 6803.

In Synechocystis sp. strain PCC 6803, the genes encoding the proteins involved in nitrate assimilation are organized into two transcription units, nrtABCD-narB and nirA, the expression of which was repressed by ammonium and induced by inhibition of ammonium assimilation, suggesting involvement of NtcA in the transcriptional regulation. Under inducing conditions, expression of the two transcript...

متن کامل

Functional Characterization of the FNT Family Nitrite Transporter of Marine Picocyanobacteria

Many of the cyanobacterial species found in marine and saline environments have a gene encoding a putative nitrite transporter of the formate/nitrite transporter (FNT) family. The presumed function of the gene (designated nitM) was confirmed by functional expression of the gene from the coastal marine species Synechococcus sp. strain PCC7002 in the nitrite-transport-less mutant (NA4) of the fre...

متن کامل

Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803.

Three constitutive forms of superoxide dismutase activity have been demonstrated in the cyanobacterial marine picoplankter Synechococcus sp. WH 7803 using polyacrylamide gel activity staining techniques. A protein which gave a positive non-haem iron stain on native polyacrylamide gels exhibited N-terminal similarity to both the iron superoxide dismutase and the manganese superoxide dismutase of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 7  شماره 

صفحات  -

تاریخ انتشار 1998